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3. REPRESENTATIONS OF 

FINITE GROUPS 
 

§ 3.1. Representations of Groups 
 Group theory began with Évariste Galois’s study of 

the solubility of polynomials by radicals. For Galois, a 

group was a group of permutations on the zeros of a 

polynomial, but later the subject grew away from 

polynomials, and groups were considered to be 

permutation groups on abstract symbols. Finally group 

theory reached its maturity when it became purely 

axiomatic and the elements no longer had to be 

permutations. 

The move towards abstraction was certainly a 

useful one. Yet concrete models can often throw light on 

abstract structures. A rather trivial, but useful, example is 

in the area of finite-dimensional vector spaces. A vector 

was first considered to be an n-tuple of scalars such as (x1, 

x2, … , xn), with addition and scalar multiplication being 

carried out component-wise. But then vector spaces 

became fully axiomatised and the n-tuples became just 

one example among many. However, one of the early 

theorems in linear algebra is that every finite-dimensional 

vector space is isomorphic to the space of n-tuples, for 

some n. So vector spaces can be represented by n-tuples 

and some theorems about abstract vector spaces can be 

proved by just considering this concrete model. 
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In group theory we have the theorem that every 

finite group is isomorphic to a group of permutations, and 

so we can prove theorems about an abstract group G by 

considering it as a group of permutations on G. Mostly 

the extra structure just gets in the way, but the following 

little theorem shows that the idea is not entirely without 

merit. 

 

Theorem 1: If |G| = 2N, where N is odd, then G has a 

normal subgroup of order N. 

Proof: By Cauchy’s Theorem (or even more simply by 

observing that elements whose order is bigger than 2 

come in pairs {x, x−1}) G has an element of order 2. 

Regarding G as a group of permutations on G by right 

multiplication, an element of order 2 would correspond to 

a permutation of the form ()() … (), a product of 

N transpositions. Such a permutation is odd so the map 

:G → ℤ2 defined by g = 



0 if g corresponds to an even permutation

1 if g corresponds to an odd permutation
 

is a homomorphism whose image is ℤ2. Hence G/ker   

ℤ2 and so |ker | = N. ☺ 

 

 However, representing groups as groups of 

permutations doesn’t appear to be particularly fruitful. By 

contrast representing groups as groups of matrices is a 

quite different story. Every permutation on n symbols can 

be represented by an n  n permutation matrix and so 

every group of order n can be represented by a group of n 
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 n matrices. The advantage of moving across to matrices 

is that we have the rich theory of linear algebra to make 

use of. This time we can use the concrete model to prove 

quite deep theorems in group theory, some of which were, 

for many years, only proved in this way. 

 The matrices can be considered to be over any 

field. Economy might suggest using a small finite field, 

such as ℤ2 (after all the permutation matrices only need 

0’s and 1’s) but the characteristic of the field often gets in 

the way. The nicest theory uses the field of complex 

numbers. This is so-called ‘classical’ representation 

theory. The field ℂ has three important properties: 

(1) it has characteristic zero – so there’s no prime 

associated with the field; 

(2) it’s algebraically closed – so eigenvalues exist 

in the field; 

(3) it has the useful structure of the complex 

conjugate. 

 

 Sometimes it’s useful to work, not with matrices, 

but with linear transformations of a vector space, which 

is essentially the same thing but without having to bother 

with choosing a specific basis. We start by considering 

representations of groups by groups of linear 

transformations over a finite-dimensional vector space 

over an arbitrary field, but after a while we focus on 

groups of matrices over the field of complex numbers. 

 If V is a finite-dimensional vector space over the 

field F we denote the set of invertible linear 
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transformations from V to V by Aut(V). This is a group 

under the operation of the product of linear 

transformations. What is 

essentially the same thing, 

is GL(n, F), the general 

linear group of degree n 

over the field F, which is 

the group of invertible n  

n matrices over F. 

 

It’s assumed that the reader understands the 

rudiments of ring theory. We make very little use of that 

theory except at one point where we assume the 

Wedderburn Structure Theorem. This is quite a deep 

theorem that provides a foundation for representation 

theory. Either you will have spent many weeks elsewhere 

in proving this theorem or you’ll simply have to accept 

the result without proof. 

 

We’ve implied that Representation Theory is 

concerned with matrix groups that are isomorphic to a 

given one. Actually that’s not quite true. We’re interested 

in matrix groups that are homomorphic images of a given 

group, not just isomorphic ones. 

A representation of degree n of a group G over 

the field F is defined to be a group homomorphism : G→ 

GL(n, F). By the first isomorphism theorem the image of 

a representation  is a group of n  n matrices that’s 

isomorphic to the quotient group G/ker(). 
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 A linear representation is a representation of 

degree 1. This is an important special case. Of course a 1 

 1 matrix behaves like its one and only component so a 

linear representation is essentially a homomorphism to F#, 

the group, under multiplication, of the non-zero elements 

of the field F. 

 Among the linear representations is the so-called 

trivial representation. The trivial representation is (g) 

= 1 for all g  G. Not very exciting perhaps, but the trivial 

representation is as important to representation theory as 

the number 0 is to arithmetic or the empty set to set 

theory. 

 

Example 1: If  = e2i/3 the following is a matrix 

representation of degree 2 for S3: 

 

I (123) (132) (12) (13) (23) 







1 0

0 1
 







  0

0 2  






2  0

0  
 







0 1

1 0
 







0  2

  0
 







0  

 2 0
 

 

 The trivial representation squeezes the group 

entirely into one element so that no information about the 

group remains. The kernel of the trivial representation is 

the whole group. At the other end of the spectrum are the 

faithful representations. A representation is faithful if its 

kernel is trivial. The image under a faithful representation 

is isomorphic to the group itself. It might seem that these 

are the best representations because they don’t lose any 
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information. But a suitable collection of ‘unfaithful’ 

representations is usually more useful. 

 

Example 2: 

 The following are some of the representations of 

the Klein Group V4 with presentation A, B | A2, B2, AB 

= BA. 

 To begin with there’s the trivial representation: 

(1) = 1, (A) = 1, (B) = 1, (AB) = 1. 

Then there are three other linear representations. Since 

every element of the group satisfies 

g2 = 1, a linear representation must map each element to 

a complex number satisfying x2 = 1. So the linear 

representations of G are: 

 

 1 A B AB 

 1 1 1 1 

 1 1 −1 −1 

 1 −1 1 −1 

 1 −1 −1 1 

 

Then there’s a faithful representation that maps A to 







−1 0

0  1
  B to 







1  0

0 −1
 , and AB to 







−1  0

0  −1
 . 

 

 If G is a group of permutations we can represent 

each element g by the corresponding permutation matrix, 

(aij) where: 
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                           aij = 


1 if g(i) = j

0 if g(i)  j
  

 

Such a representation is called a permutation 

representation. It will always be faithful. 

 

 Cayley’s theorem shows that every finite group can 

be considered as a group of permutations on itself since, 

for  g  G,  the map  x→xg  is a permutation  (g)  of G 

and  is a homomorphism. If G has order n we can 

represent (g) by an n  n permutation matrix. This 

permutation representation is called the regular 

representation. 

 

Example 3: The regular representation for V4 above is: 

I → 









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , A → 









0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , B → 









0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , 

AB → 









0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 . 

 

Two representations ,  are equivalent if there’s an 

invertible S such that: 

(g) = S−1 (g) S for all g  G. 
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Example 4: 

The representations of S3 include: 

 I (123) (132) (12) (13) (23) 

1 1 1 1 1 1 1 

2 1 1 1 −1 −1 −1 

3 






1 0

0 1
  







0 −1

1 −1
  







−1 1

−1 0
  







0 1

1 0
  







1 −1

0 −1
  







−1 0

−1 1
  

4 






1 0

0 1
  







1 0

0 1
  







1 0

0 1
  







1   0

0 −1
  







1   0

0 −1
  







1   0

0 −1
  

5 






10

01
  







 0

02   






2 0

0 
  







01

10
  







02

 0
  







0 

20
  

6 







100

010

001
  







010

001

100
  







001

100

010
  







010

100

001
  







001

010

100
  







100

001

010
  

 

 I (123) (132) 

7 











100000

010000

001000

000100

000010

000001

  











010000

001000

100000

000010

000001

000100

  











001000

100000

010000

000001

000100

000010
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 (12) (13) (23) 

7 











000100

000001

000010

100000

001000

010000

  











000010

000100

000001

010000

100000

001000

  











000001

000010

000100

001000

010000

100000

  

 

where  = e2i/3. 

• 1, 2 are linear representations; 3, 4 and 5 have 

degree 2, 6 has degree 3 and 7 has degree 6. 

• 1 is the trivial representation. 

• 6 and 7 are permutation representations. 

• 7 is the regular representation. 

• 3, 5, 6 and 7 are faithful. 

• 3 is equivalent to 5 since S−13(g)S = 5(g) where 

S = 






1  1

  1+
 . 

 

§ 3.2. Characters of Groups 
 As rich as matrices 

are, they’re a little too bulky. 

So instead of considering the 

matrices themselves we 

consider their traces. 

 The trace of a matrix is the sum of the diagonal 

components so it’s a very easy quantity to calculate – 
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much easier than determinants or eigenvalues. But it’s 

closely related to eigenvalues in that the trace of a matrix 

is the sum of the eigenvalues. And similar matrices 

have the same trace. 

 The character over a field F of a representation  

of a finite group G is the map : G → F defined by: 

(g) = trace (g). 

 

Example 5: 

The following is one of the representations of S3 we 

considered earlier: 

 I (123) (132) (12) (13) (23) 

 






1 0

0 1
  







  0

0 2   






2  0

0  
  







0 1

1 0
  







0 2

  0
  







0  

2  0
  

 

Its character is the function given by the following table: 

 

 I (123) (132) (12) (13) (23) 

 2 −1 −1 0 0 0 

 

Remember that 1 +  + 2 = 0. 

 

Concepts such as ‘degree’, ‘faithful’ and ‘trivial’ extend 

to characters. So the regular character of S3 is the 

character of the regular representation, 7, in example 2. 

It is: 
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 I (123) (132) (12) (13) (23) 

 6 0 0 0 0 0 

 

Theorem 2: 

(1) Equivalent representations have the same character. 

(2) Characters are constant on conjugacy classes. 

Proof: Both of these follow from the fact that similar 

matrices have same trace. For example if the 

representation  is equivalent to  then there exists an 

invertible matrix S such that 

(g) = S−1(g)S and, being similar, these have the same 

trace. ☺ 

 

 We can easily read off the degree of a character 

(meaning the degree of the corresponding representation) 

by simply looking at its value on 1. 

 

Theorem 3: The degree of a character  is (1). 

Proof: If  is the representation of degree n that 

corresponds to the character  then (1) is the n  n 

identity matrix whose trace is n. ☺ 

 

 There’s a shortcut we can use for permutation 

representations. We can pass directly from the 

permutations to the character without having to think 

about the matrices. 
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Theorem 4: If  is a permutation character, (g) is the 

number of symbols fixed by g. 

Proof:  If  is the permutation representation itself then 

the i-j entry of (g) is 1 if g(i) = j and it is 0 otherwise so 

(g) is simply the number of 1’s on the diagonal. ☺ 

 

Example 6: If G = S4 and  is the permutation character, 

((123)) = 1, since (123) fixes 1 symbol, ((12)) = 2, 

(I) = 4 and ((1234)) = 0. 

 

Theorem 5: If  is a character of G over ℂ of degree n 

and g  G has order m then (g) is a sum of  n  numbers, 

each of which is an  mth  root of 1. 

Proof: If gm = 1 and  is the corresponding representation 

then (g)m is the n  n identity matrix I. The matrix (g) 

is thus an n  n matrix and so has n eigenvalues over C. 

Each of these must satisfy the equation m = 1 and so be 

an mth root of 1. 

Example 7: If g is an element of order 2 and  is a 

character of degree 3, corresponding to the representation  

, then the eigenvalues of (g) will be 1. So (g)  {3, 

1, −1, −3}. If g has order 3 and  is a character of degree 

2, corresponding to the representation  , then the 

eigenvalues of (g) will be two values chosen from 1, , 

2, with possible repetitions. The possibilities for (g) are 

thus −1, 2, 2, 22, −, −2. 

Note that 1 +  = −2, 1 + 2 = − and  + 2 = −1. 
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Theorem 6: The characters, over ℂ, of an element of 

finite order and its inverse are complex conjugates. 

Proof: The eigenvalues of (g−1) are the inverses of those 

for (g). But these eigenvalues are roots of unity and so 

lie on the unit circle. Hence their inverses are the same as 

their conjugates. And the sum of these conjugates is the 

conjugate of the sum. ☺ 

 

Example 8: If  is a character of a group of permutations 

and ((1234)) = 1 + 3i then 

((1432)) = 1 − 3i. 

 

Theorem 7: If  is the character of a representation, , of 

a finite group G over ℂ of degree n then |(g)|  n for all 

g  G. 

Proof:If the eigenvalues of (g) are 1, 2 …, n then 

|(g)| = |1 + 2 + … + n| 

                                                                                           

 
i=1

n

|i| = n. ☺ 

 

Theorem 8: (g) = deg  if and only if g  ker(). 

Proof: Let n = deg . The sum of  n  roots of 1 is equal to 

n if and only if they’re all 1. 

If  is a corresponding representation then (g), is 

diagonalisable with all its eigenvalues equal to 1 and so 

must be I. ☺ 
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Example 9: The characters of the above representations 

1  to  7 of S3 are: 

 

 I (123) (132) (12) (13) (23) 

1 1 1 1 1 1 1 

2 1 1 1 −1 −1 −1 

3 2 −1 −1 0 0 0 

4 2 2 2 0 0 0 

5 2 −1 −1 0 0 0 

6 3 0 0 1 1 1 

7 6 0 0 0 0 0 

 

Example 10: The characters of S4 include the following. 

(Since all permutations with a given cycle structure are 

conjugate they have the same characters, so we need only 

list the characters by cycle structure.) 

 
I () () () ()()  

1 1 1 1 1 trivial 

1 −1 1 −1 1 odd/even 

4 2 1 0 0 permutation 

24 0 0 0 0 regular 
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§ 3.3. Class Functions 
 A class function for G over a field F is a map: 

G→F which is constant on conjugacy classes. 

 

Example 11: Some class functions for S3 are: 

 

I (12) (13) (23) (123) (132) 

17 −5 −5 −5   

−42 ¾ ¾ ¾ 1+i 1+i 

1 1 1 1 1 1 

 

Theorem 9: The set of class functions of a group G over 

a field F is a vector space CF(G, F) over F and its 

dimension over F is the number of conjugacy classes of 

G. 

Proof: It’s easily checked that the class functions form a 

vector space under the usual operations. A basis is the set 

of class functions, which take the value 1 on some 

conjugacy class and 0 on the others. ☺ 

 

Example 12: A basis for the space of class functions of 

S3 over ℂ is: 

 

 I (12) (13) (23) (123) (132) 

e1 1 0 0 0 0 0 

e2 0 1 1 1 0 0 

e3 0 0 0 0 1 1 
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The class functions given in example 10 are expressible 

(uniquely) as linear combinations of e1, e2, e3 as: 17e1 −5e2 

+ e3,   −42e1 + ¾e2 + (1 + i)e3  and e1 + e2 + e3. 

 

 A character  is reducible if  =  +  for some 

characters , . If not, it is irreducible. Irreducible 

characters are the basic building blocks of group 

characters. 

 

Theorem 10: Linear characters are irreducible. 

Proof: If  =  +  for characters  and , deg  = deg 

 + deg   2. ☺ 

 

Theorem 11: Every character is a sum of irreducible 

characters. 

Proof: We prove this by induction on the degree of a 

character. If  is reducible,  =  +  for characters  = 

, . By induction, each is a sum of irreducible 

characters and hence so too is . ☺ 

 

 Certainly if a character is linear we know that it’s 

irreducible. But there are irreducible characters of larger 

degree. For example 3 in example 8 is irreducible. How 

can we know this? After all it can be broken up as the sum 

of the two class functions  and . 
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 I (123) (132) (12) (13) (23) 

3 2 −1 −1 0 0 0 

 1 −1 + i −1 + i 1 1 1 

 1 −i −i −1 −1 −1 

 How do we know that  and  aren’t characters? 

That’s not difficult because if  was a character −1 + i 

would have to be a cube root of 1. 

But how do we know that there isn’t some other 

decomposition in which the pieces are both characters? 

The answer is to make the space of class functions into an 

inner product space. 

 From now on we’ll be doing what’s called 

ordinary representation theory. This simply means that 

the field over which we operate is ℂ, the field of complex 

numbers. One can do representation theory over other 

fields but sometimes things don’t go as nicely as they do 

over ℂ. There are three reasons. Finite fields involve 

primes that can give problems if they divide the group 

order. In ℂ no element (except the identity) has finite 

additive order, or to use technical terminology, ℂ has 

‘characteristic zero’. But ℝ and ℚ also have characteristic 

zero. What’s wrong with them? Their trouble is that 

they’re not algebraically closed. We may get matrices that 

fail to have eigenvalues in ℝ or in ℚ, which makes life 

more complicated. The third reason why ℂ works so 

beautifully is that we can exploit complex conjugates. 

 

 We make CF(G, ℂ) into an inner product space by 

defining the inner product of two class functions by 
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 |  = 



Gg

gg
G

)()(
1

 . 

 

Example 13: In the above table all three rows represent 

class functions. 

3 |  = 
1

6
 [2 + 2(−1)(−1−i) + 0] = 

1

6
 (4 + 2i) and 

| = 
1

6
 [1 + 2(−i)( i) + 3(−1)(−1)] = 1. 

 

§ 3.4. The Fundamental Theorem of 

Characters 
Theorem 12: (FUNDAMENTAL THEOREM OF 

CHARACTERS) The irreducible characters of a finite 

group G over ℂ form an orthonormal basis for CF(G, ℂ). 

Proof: This is proved in Chapter 6.  

 

Theorem 13: The number of irreducible characters of a 

finite group G, over ℂ is equal to the number of conjugacy 

classes of G. 

Proof: We saw already that the dimension of CF(G, ℂ) 

over ℂ is the number of conjugacy classes. ☺ 

 

Theorem 14: If ,  are distinct irreducible characters of 

a finite group G over ℂ: 

( ) ( )g g
g G




 = 0 . 

Proof: Distinct irreducible characters are orthogonal 

class functions. ☺ 
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Theorem 15: If  is an irreducible character of a finite 

group G over ℂ then: 

( )g G
g G

2



 = . 

Proof: Irreducible characters have unit length. ☺ 

 

Theorem 16: Suppose G is a finite group with irreducible 

characters 1, ... , k over ℂ. 

If  is any character, expressible as a sum of irreducible 

characters by  = miI, then: 

(1) for each i, mi =  | i; 

(2)  |  = mi
2. 

Proof: (1)   | i = mjj | i = miI | i = mi. 

(2)   | = 

 
====

===
k

i

i

k

i

iii

k

ji

jiji

n

ji

ji mmmm
1

2

1

2

1,1,

 . ☺ 

Corollary: A character  is irreducible if and only if 

 |  = 1. 

 

Theorem 17: If  is the regular character and 1, ... , k 

are the irreducible characters with degrees n1, ... ,nk then 

 = ni i

i

k


=


1

. 

Proof: (g) = |G| if g = 1 and 0 otherwise. So |i = ni. 
☺ 
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Theorem 18: If 1, ... , k are the irreducible characters 

with degrees n1, ... ,nk then 

n Gi

i

k
2

1=

 = . 

Proof: If  is the regular character, 

| = |G| = ni

i

k
2

1=

 . ☺ 

 

§ 3.5. Character Tables 
 The character table for a finite group G, over ℂ, 
gives the value of each irreducible character on each 

conjugacy class. We’ll use the following notation for 

character tables: 

 

k is the number of conjugacy classes (also the number of 

irreducible characters); 

1, 2, …, k are the conjugacy classes; 

−1 is the conjugacy class containing the inverses of the 

elements of ; 

1, 2, …, k are the irreducible characters; 


_

 is the conjugate of the character  ; 

n1, n2, …, nk are the degrees of the irreducible 

representations; 

h1, h2, …, hk are the sizes of the conjugacy classes; 

m1, m2, …, mk are the orders of the elements of each 

conjugacy class. 
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 The main part of the character table is the k  k 

matrix (ij) where ij = i(j). 

It is supplemented by explanatory rows listing: 

• the conjugacy class names; 

• the elements of each class (or a representative); 

• the orders of the elements. 

 

 The order of the rows and columns in a character 

table are theoretically arbitrary, but the following 

conventions are usually used: 

 

(1) The identity conjugacy class {1} is placed first. 

 

(2) Conjugacy classes that are inverses to one another are 

placed together. 

 

(3) The trivial character is placed first. Then come all the 

linear characters. Often characters are sorted in ascending 

order of their degrees, though frequently they’re placed in 

the order in which they’re found. 

 

(4) Irreducible characters that are conjugate to each other 

should be placed adjacent to each other. So often in a 

character table there will be blocks of the form: 

 

z 
z
_
  

z
_
  

z 
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 So a typical character table will look like this. 

 

class 1  2 ... k 

elements 1 … … … 

size 1 h2 ... hk 

1 1 1 ... 1 

2 n2 22 ... 2k 

... ... ... ... ... 

k nk k2 ... kk 

order 1 m2 ... mk 

 

Theorem 19: The character table of a finite group G, over 

ℂ, has the following properties: 

(1) h Gi

i

k

=

 =
1

; 

(2) n Gi

i

k
2

1=

 = ; 

(3) h
if i j

G if i jt it jt

t

k

 
=

 =

=



1

0
 (orthogonality of the rows); 

(4)  ti tj

t

k

i

if i j
G

h
if i j

=

 =



=







1

0

 (orthogonality of the columns). 

(Here ij is the value of the irreducible character i on the 

elements of the conjugacy class j, 

          ni is the degree of i and 

          hj is the size of j.) 
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Proof: 

(1) is just the class equation; 

(2) is theorem 17; 

(3) is the fundamental theorem of characters 

      (Theorem 11). 

If A is the matrix (aij) where aij = hj/|G| ij  then (3) 

implies that A is a unitary matrix, that is AA* = I where 

A* is the conjugate transpose of A. 

It follows that A*A = I which gives (4). ☺ 

 

Example 14: The following is the character table for a 

certain group G. 

class 1 2 3 4 

size 1 3 4 4 

1 1 1 1 1 

2 1 1  2 

3 1 1 2  

4 3 −1 0 0 

order 1 2 3 3 

 

Here  and 2 are the two non-real cube roots of unity. 

Remember that they’re conjugates of one another. And 

never forget that 1 +  + 2 = 0. That often comes in 

handy! 

 

We can see that |G| = 1 + 3 + 4 + 4 = 12. 

Note too that 12 = 12 + 12 + 12 + 32. 
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G has 3 elements of order 2 (in 2) and 8 of order 3 (in 3 

and 4). 

 

Note the orthogonality of the rows. For example with 2 

and 3 we get: 

1.1 + 3.1.1 + 4.. + 4.2.2 = 4 + 42 + 4 = 0. 

 

And the sums of squares of the moduli of the entries along 

each row (suitably weighted by the class sizes) are all 12. 

Along the second row it is 12 + 3(12) + 4||2 + 4|2| = 12 

and 

along the third row it is 32 + 3.12 + 4.0 + 4.0 = 12. 

 Note the orthogonality of the columns. For 

example taking the 3rd and 4th columns we get 1.1 + . 

+ .2.2 = 1 + 2 +  = 0. Taking the sum of squares of 

the moduli down each column you get the order of the 

group, 12, divided by the class size. 

For example, down column 2 we get 1 + 1 + 1 + 1 = 4 = 

12/3 and down column 4 we get 

1 + 1 + 1 + 0 = 3 = 12/4. 

 

he ‘−1’ entry is the trace of a 3  3 matrix. This is the sum 

of the three eigenvalues. Now each of these eigenvalues 

must be 1 since the elements of 2 have order 2. So we 

can infer that the eigenvalues are 1, −1, −1. The zero 

entries in the last row are each the sum of 3 cube roots of 

unity. The only way to get a zero sum from 3 cube roots 

of unity is to take exactly one of each. So we can infer that 
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the 3  3 matrices that arise here must have distinct 

eigenvalues 1,  and 2. 

 1 is clearly the trivial character. The regular 

character: [12,  0,  0,  0] is expressible as a sum of 

irreducible characters as 1 + 2 + 3 + 34. 

 

 As can be seen a considerable amount of 

information about the group (and the representations 

themselves) can be recovered from the character table. Of 

course one has to know something about the group in the 

first place to be able to construct the character table. But 

we can learn new things about a group by using 

characters. 

 

§3.6. The 3N Test for Class Equations 
Lemma: If z = a + b where a, b  ℤ then |z|2  ℤ. 

Proof: Multiplying z by its conjugate we get 

|z|2 = (a + b)(a + b2) 

      = a2 + b2 + ab + ab2 

      = a2 + b2 − ab  ℤ. 
 

Theorem 6 (3N Test): Suppose |G| = 3N and G has 

precisely 2 classes of size N. 

Then |G| = N and the class equation for G is 

3N = 1 + 3t1 + 3t2 + … + 3tk + N*2 where 

N = 1 + t1*3 + t2*3 + … + tk*3 

is the class equation for G. 
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Proof: The elements of  have order 3 and commute only 

with their powers. 

Suppose  is a class of size N. 

If  = −1 then there exists g   and x  G such that 

x−1gx = g−1. 

Then x2  CG(g). 

But |CG(g)| = 3 so x  CG(g). 

Hence g2 = 1, a contradiction. 

Hence the two conjugacy classes of size N are  and −1. 

By column orthogonality there must be a non-real entry 

in the  column of the character table for G and, since the 

eigenvalues of the corresponding matrix must be cube 

roots of 1, this entry must have the form a + b where a, 

b are integers and b  0. 

 

The character table for G contains the sub-table: 

class 1  −1 

size 1 N N 

1 1 1 1 

2 n a + b a + b2 

3 n a + b2 a + b 

order 1 3 3 

where a, b  ℤ with b  0. 

 

By the lemma, |a + b|2 = |a + b2|2 are positive integers 

and since the sum of squares of the entries in each of the 

last two columns is 3N/N = 3, we must have |a + b|2 = 
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|a + b2|2 = 1 and all other entries in these columns must 

be zero. 

 

So, by orthogonality with the first column, 

0 = 1 + n(a + b) + n(a + b2) 

                        = 1 + n(2a −b). 

Hence n = 1. 

Thus G has at least 3 linear characters. 

 

But if  is any linear character then  ()  0 and so G has 

exactly 3 linear characters and so |G| = N. 

Clearly G = G −  − −1. 

 

The elements of  + −1 have centralisers of order 3 so 

can’t commute with any non-trivial element of G. 

 

Hence if 1  g  G, CG(g) = CG(g). 

Thus if g  G has t > 1 conjugates in G then it has 3t 

conjugates in G. 

 

Example 8: If  G has class equation 48 = 1 + 3 + 12 + 16 

+ 16 then G has class equation 

16 = 1 + 1 + 1 + 4 + 4 + 4, which fails the Z Test. 
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EXERCISES FOR CHAPTER 3 
 

EXERCISE 1: 

Examine the following character table for a finite group 

G and answer the following questions. Give adequate 

reasons for your answers. 

 1 2 3 4 

1 1 1 1 1 

2 3 −1 0 0 

3 1 1  2 

4 1 1 2  

(a) What is |G|? 

(b)  Find the sizes of the conjugacy classes. 

(c) Find the orders of the kernels of each of the 

corresponding irreducible representations. 

(d) Which of the irreducible characters are faithful? 

(e) Find the order of the elements in each conjugacy class. 

 

EXERCISE 2: Complete the following character table, 

giving brief explanations as to how each entry is obtained. 

 1 2 3 4 5 

1      

2 1 i 1   −1 

3  0 −1 0 0 

4 1  1 −1 1 

5 1 −i 1  −1 
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EXERCISE 3: For the character table obtained in 

exercise 2, compute the size and the order of the elements 

of each of the conjugacy classes. 

 

EXERCISE 4: Examine the following character table for 

a finite group G and answer the following questions. Give 

adequate reasons for your answers. 

 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 

2 1 1 1 1 −1 −1 −1 

3 1 1  2 1  2 

4 1 1 2  1 2  

5 1 1  2 −1 − −2 

6 1 1 2  −1 −2 − 

7 6 −1 0 0 0 0 0 

(a) What is |G|? 

 

(b) Find the sizes of the conjugacy classes. 

 

(c) Find the orders of the kernels of each of the irreducible 

representations. 

 

(d) Which of the irreducible representations are faithful? 

 

(e) Draw the lattice diagram for all the normal subgroups 

of G. 
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(f) Find Z(G) and G'. For each of them identify which 

conjugacy classes they are built up from and give a well-

known group that it is are isomorphic to. 

 

(g) Find the order of the elements in each conjugacy class. 

 

(h) Express the following character as a sum of 

irreducible characters: 

 

 1 2 3 4 5 6 7 

 14 7 2 2 −6 0 0 

 

EXERCISE 5: Examine the following character table for 

a finite group G and answer the following questions. Give 

adequate reasons for your answers. 

 

 1 2 3 4 5 6 7 8 9 

1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 −1 −1 1 1 

3 −1 2 2 −1 −1 0 0 −1 2 

4 1 1 1 −1 1 −1 1 −1 −1 

5 1 1 1 −1 1 1 −1 −1 −1 

6 −1 2 2 1 −1 0 0 1 −2 

7 −2 −2 2 0 2 0 0 0 0 

8 1 −2 2 3i −1 0 0 −3i 0 

9 1 −2 2 −3i −1 0 0 3i 0 
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(a) How many conjugacy classes does G have? 

 

(b) Which conjugacy class is {1}? 

 

(c) What is |G|? 

 

(d) Find the sizes of the conjugacy classes. 

 

(e) Find the orders of the kernels of each of the irreducible 

representations. 

 

(f) Which of the irreducible representations are faithful? 

 

(g) Draw the lattice diagram for all the normal subgroups 

of G. 

 

(h) Find Z(G) and G. Identify which conjugacy classes 

they are built up from and describe a well-known group 

that they are isomorphic to. 

 

(i) How many of the elements of G have order 3? 

 

EXERCISE 6: Complete the following character table, 

giving brief explanations as to how each entry is obtained. 
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 1 2 3 4 5 6 7 8 

size  3 3 16 3 3  3 

1   −1   −1  −1 

2     1    

3 1  1  1 1  1 

4 1  1 2 1 1  1 

5 3  −1+2i  −1 1  −1−2i 

6         

7 3  1  −1 −1−2i  1 

8     −1 −1+2i   

order 1  4 3 2 4  4 

 

EXERCISE 7: Complete the following character table, 

giving brief explanations as to how each entry is obtained. 

 1 2 3 4 5 6 7 

size 1 1 6 4 4 4 4 

1        

2 1 1 1   2  

3 1 1 1 2    

4 2   −    

5 2   −2    

6      1  

7        

order 1  4 3    
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SOLUTIONS FOR CHAPTER 3 
 

EXERCISE 1: (a) 12; (b) 1, 3, 4, 4; (c) |ker 1| = 12, 

|ker 2| = 1, |ker 3| = |ker 4| = 4; (d) 2; (e) 1, 2, 3, 3. 

 

EXERCISE 2: 

None of 2 to 5 are the trivial character so 1 must be 

trivial. Since i is not real its conjugate −i must appear in 

that row, so 4 = 2
−1. We can therefore complete columns 

2 and 4. By orthogonality of columns 1 and 3 we deduce 

that deg 3 = 4. The character table is thus: 

 

 1 2 3 4 5 

1 1 1 1 1 1 

2 1 i 1 −i  −1 

3 4 0 −1 0 0 

4 1 −1 1 −1 1 

5 1 −i 1 i −1 

 

EXERCISE 3: The group has order 20. We can now 

compute the sizes of the conjugacy classes: 1, 5, 4, 5, 5. 

Since the order is even the group must contain elements 

of order 2. Their characters must be real so the elements 

of order 2 must lie in 3 or 5 or both. But the centraliser 

of an element in 3 has order 5, so the elements of order 

2 must lie in 5. Also since the group order, 20, is divisible 

by 5 there must be elements of order 5. Clearly these can’t 

lie in 2 or 4 since i has order 4. So they must lie in 3. 
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Of course the only element of 1 has order 1, so that just 

leaves 2 and 4. Since 4 = 2
−1 they must all have the 

same order. This must divide 20 and, since  i  has order 4, 

their order must be divisible by 4. Thus they have order 

exactly 4. The orders of the elements of the conjugacy 

classes are thus 1, 4, 5, 4, 2  respectively. 

 

EXERCISE 4: 

(a) 42;                                (b)1, 6, 7, 7, 7, 7, 7 

(c) 42, 21, 14, 7, 7, 1;        (d) 7 

(e) 

                            G 

 

            H                    K 

 

 

                            L 

 

 

                           1 

H = 1 + 2 + 5,    K = 1 + 2 + 3 + 4,   L = 1 + 2 

 

(f) Z(G) = 1, G = L  C7 

 

(g) Since L  C7 the elements of 2 have order 7. 

Since |G| = 42 there must be elements of orders 2, 3. 

The only class that could contain elements of order 2 is 

5. By considering the linear characters we see that the 

order of the elements of 6, 7 is a multiple of 6. 
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The only multiples of 6 dividing 42 are 6 and 42 and G is 

clearly not cyclic. So the elements of 6, 7 must have 

order 6 leaving the elements of 3, 4 being the ones of 

order 3. 

(Note that since 4 = 3
−1 and 7

−1 = 6 the elements in 

each of these pairs of conjugacy class have the same 

order.) 

The elements of the i have orders 

1, 7, 3, 3, 2, 6, 6, respectively. 

 

(h)  = m11 + ... + m77 where mi = |i so 

      = 1 + 32 + 25 + 26 + 7. 

 

EXERCISE 5: 

(a) 9 conjugacy classes; 

 

(b) 3 (largest modulus); 

 

(c) |G| = ni
2 = 24. 

 

(d) |1| = |4| = |5| = |8| = |9| = 24/12 = 2; 

      |2| = |3| = 24/24 = 1; |6| = |7| = 24/4 = 6. 

     (Check: the sizes total 24.) 

 

(e) |ker 1| = 24; 

|ker(2)| = |1| + |2| + |3| + |4| + |5| + |8| + |9| = 12; 

|ker(3)| = 4; |ker(4)| = |ker(5)| = 12; |ker(6)| = 2; 

|ker(7)| = 3; |ker(8)| = |ker(9)| = 1. 
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(f) Only 8 and 9 are faithful. 

 

(g) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(h) Z(G) is the union of all the classes of size 1 and 

consists of classes 2, 3. Z(G)  C2. 

G' is the intersection of the kernels of the linear 

representations and consists of classes 1, 2, 3 and 5. It has 

order 6 but is clearly not isomorphic to S3 (it has a normal 

subgroup of order 2) so it is isomorphic to C6. 

 

(i) For an element g of order 3 the only possible 

eigenvalues for ((g)) are 1,  and 2. Hence these are 

the only possible values for linear characters . By 

inspecting the table we see that the only possibilities for 

elements of order 3 are 1, 2, 3 and 5. But 3 ={I} and 

the elements of 2 are in a subgroup of order 2. Now 5, 

1 + 2 + 3 + 4 

     + 5 + 8 + 9 

 

3 

 

3 + 5 

 

2 + 3 + 9 

 

1 + 2 + 3 + 

5 

1 + 2 + 3 + 5 + 

7 

1 + 2 + 3 + 5 +  

6  

2 + 3 

 

G 

 



 81 

being in a subgroup of order 3 must consist of 2 elements 

of order 3. These account for all the elements of order 3 

in G'  C3  and so 1 must consist of the 2 elements of 

order 6. 

 

EXERCISE 6: The conjugates of 5 must be 6 and the 

conj of 7 must be 8. The character 2 must be the trivial 

character. 4
−1 = 7; |1| = 1, |G| = 48, deg 1 = 3, so the 

remaining entries in 4, 7 are 0, 6
−1 = 2, 1(5) = 3 by 

orthogonality with 1. 

 

 1 2 3 4 5 6 7 8 

size 1 3 3 16 3 3 16 3 

1 3 −1 −1 0 3 −1 0 −1 

2 1 1 1 1 1 1 1 1 

3 1 1 1  1 1 2 1 

4 1 1 1 2 1 1  1 

5 3 1 −1+2i 0 −1 1 0 −1−2i 

6 3 1 −1−2i 0 −1 1 0 −1+2i 

7 3 −1+2i 1 0 −1 −1−2i 0 1 

8 3 −1−2i 1 0 −1 −1+2i 0 1 

order 1 4 4 3 2 4 3 4 
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